
Printing:

Assured TLL NN Repair

Assured TLL NN Architectures

• Assure that NN training CAN be successful
• Assured NN architectures for Linear-Time Invariant (LTI) Systems [4]

• Size TLL NN architecture based on Model-Predictive
Control

• Explicit MPC controller not required: fast algorithm
(assured architecture in seconds not days like NAS)

• Assured NN architectures for Nonlinear Systems [6,8]
• Assure more general specifications, too: bisimulation

• Abstract Disturbance Simulation → unify/extend robust and disturbance bisimulation

• Algorithmic translation of (known) Lipschitz-continuous controller to TLL [6]

• Repair counterexample from formal verification: no assurance → assurance
• Also: repair c.e. while assuring existing safe behavior is retained [1]

• Repair problem is hard: one neuron affects many affine regions
• Change one neuron to repair c.e. → behavior elsewhere

in state space is affected → undo original safety of NN

• Solution: TLL semantics separate “local” and “global”
concerns (local linear functions/selector layer) [1]
• Input-affine dynamics/one-step counterexample [1]:

- Alternate between Local & Global convex optimization
problems

100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

number of states n

ex
ec

ut
io

n
tim

e
[s

ec
]

Execution time

0

0.5

1

1.5

2

2.5

·105

nu
m

be
ro

fl
oc

al
fu

nc
tio

ns
N

e
s
t

Execution Time
Number of local functions

Max number of local functions

Formal Neural
Network

Verification

Neural Network Training

Assured NN Architecture:
Training CAN meet spec.!

Data

Collect Data

Assured
Architecture

Design

(May NOT meet spec.!) Specification not met!

Assured Neural
Network Repair

meets specification!

Trained NN
Assured Neural Network:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

Specification met!

EnergyShield [9]: Safety and Energy Savings

Controller “Shield”: Runtime safety monitor

Formal TLL NN Verification

Key Idea: Semantic NN Architecture — Two-Level Lattice (TLL)

Assured Autonomy Neural Network (NN) Design Pipeline Safe Vehicle-to-Edge NN Offloading

Assured Autonomy for Systems with Neural Network Components James Ferlez
Postdoctoral Scholar, Resilient Cyber-Physical Systems Lab
University of California, Irvine
jferlez@uci.edu | https://jferlez.github.io

• Fast polynomial complexity algorithms for TLL Verification (in # neurons) [5]
• Restricted architectures → faster verification [5]

• Fast Box Analysis of Two Level Lattice NNs: FastBATLLNN [3]
• Restricted, “Box-like” (hypercube) output constraints → even faster [3]

• Polynomial complexity (in # neurons)

• Exploit constraints and min/max semantics

• FastBATLLNN compared to state-
of-art NN verifiers [3]:

• Fast reachability for Linear Time-Invariant (LTI) systems with TLL controllers
• One-step exact LTI reachability polynomial for TLLs

(exponential for DNNs) [7]

• L-TLLBox [7]: faster speed using bounding box
propagation (leverage FastBATLLNN)

• Example bounding box after T=3 steps [7]
• L-TLLBox (green): 25 seconds

• NNV (red): 139,000 seconds

• Energy used by NN hardware reduces Electric Vehicle range by up to 15% !

x

`1(x)

...

`2(x)

Ǹ(x)

M parallel min nets (ReLU)

1

Linear/Selection Layers (no activation)

...
...

Mn
f(x)

⌃

⌃

⌃

x1

x2

xn

...
. . .
. . .

. . .

. . .

maxM

1 max net (ReLU)

W`x+b`

kernel: S1

kernel: S2

kernel: SM

{`i(x)|i2sM}
N 1

min
i2sM

`i(x)
.
.
.

minN

. . .

. . .

. . .

. . .

i2sM
.
.
.

i 62sM
.
.
.

N 1

min
i2s2

`i(x)
.
.
.

{`i(x)|i2s2}

minN

. . .

. . .

. . .

. . .

i2s2
.
.
.

i 62s2
.
.
.

N 1

min
i2s1

`i(x)
.
.
.

{`i(x)|i2s1}

minN

. . .

. . .

. . .

. . .

i2s1
.
.
.

i 62s1
.
.
.

Pipeline of design components to enforce assurances before and after training: assured architectures; formal verification; and assured repair.

• Based on Two-Level Lattice (TLL representation for Continuous, Piecewise Affine (CPWA) functions [10]
• Rectified Linear Unit (ReLU) TLL NNs [4]:

• Two “levels” of lattice operations: min and max operations via ReLUs
(all nonlinear neurons in these layers!)

• Local affine functions appear directly as neuron weights (first layer) [4]
(e.g.)

• Activation region of local affine functions determined by “selection layer”

• Semantic NN Architecture: specific neuron weights ↔ specific properties of NN function

• Use controller shield to
bound safe edge response
times [9]

• Controller shield assures
safety after receiving
response [2]

• On-vehicle computation used
as fallback

• Energy use (and hence
simplicity) of shield is critical

• State dependent energy savings: more energy saved when “safer”!

References

0 50 100 150 200
Proved cases

10 1

100

101

102

Ti
m
eo
ut
(s
ec
)

nnenum (4 cores)
nnenum (24 cores)
PeregriNN (4 cores)
PeregriNN (24 cores)
⍺-β-Crown (4 cores)
⍺-β-Crown (24 cores)
FastBATLLNN (4 cores)
FastBATLLNN (24 cores)

ControllerController

Controller

EnergyShield

Edge Computing

Local Execution

Edge Computing

Offloading Decisions

Verified Control OutputsUnverified Control

Provably-Safe
Energy-Efficient

Independent

Provably-Safe
Energy-Efficient

Local

Remote

Conventional EnergyShieldNN Controller
in-the-loop
at the edge

Reduction

Reduction

No instances of
r < 2 when S=1

?

C1: Shield

C2: Runtime Safety Monitor

NNc

C3: NNp

NNc

C3: NNp

Offload
Decision

C4: Edge
Response
Estimator

At the Edge

?

(x, u)

(x, u)

u

u

x

x
Offload

End
(x, u)

0 50 100 150 200
Proved cases

10 1

100

101

102

Ti
m
eo
ut
(s
ec
)

nnenum (4 cores)
nnenum (24 cores)
PeregriNN (4 cores)
PeregriNN (24 cores)
⍺-β-Crown (4 cores)
⍺-β-Crown (24 cores)
FastBATLLNN (4 cores)
FastBATLLNN (24 cores)

[1] Ulices Santa Cruz, James Ferlez, and Yasser Shoukry. Safe-by-Repair: A Convex Optimization Approach for Repairing Unsafe
Two-Level Lattice Neural Network Controllers. In 2022 61st IEEE Conference on Decision and Control (CDC), 2022. URL:
http://arxiv.org/abs/2104.02788, arXiv:2104.02788, doi:https://doi.org/10.48550/arXiv.2104.02788.

[2] James Ferlez, Mahmoud Elnaggar, Yasser Shoukry, and Cody Fleming. ShieldNN: A provably safe NN filter for unsafe NN
controllers. 2020. URL: https://arxiv.org/abs/2006.09564.

[3] James Ferlez, Haitham Khedr, and Yasser Shoukry. Fast BATLLNN: Fast Box Analysis of Two-Level Lattice Neural Networks.
In Hybrid Systems: Computation and Control 2022 (HSCC’22). ACM, 2022. URL: http://arxiv.org/abs/2111.09293, arXiv:
2111.09293.

[4] James Ferlez and Yasser Shoukry. AReN: Assured ReLU NN Architecture for Model Predictive Control of LTI Systems. In Hybrid

Systems: Computation and Control 2020 (HSCC’20). ACM, 2020. arXiv:1911.01608.

[5] James Ferlez and Yasser Shoukry. Bounding the Complexity of Formally Verifying Neural Networks: A Geometric Approach. In
2021 60th IEEE Conference on Decision and Control (CDC), 2021. doi:https://doi.org/10.1109/CDC45484.2021.9683375.

[6] James Ferlez and Yasser Shoukry. Assured neural network architectures for control and identification of nonlinear systems. 2022.
URL: https://arxiv.org/abs/2109.10298.

[7] James Ferlez and Yasser Shoukry. Polynomial-time reachability for LTI systems with Two-Level Lattice Neural Network controllers.
IEEE Control Systems Letters, 2023 (to appear).

[8] James Ferlez, Xiaowu Sun, and Yasser Shoukry. Two-Level Lattice Neural Network Architectures for Control of Nonlinear Systems.
In 59th Conference on Decision and Control (CDC), 2020. URL: http://arxiv.org/abs/2004.09628, arXiv:2004.09628.

[9] Mohanad Odema, James Ferlez, Goli Vaisi, Yasser Shoukry, and Mohammad Abdullah Al Faruque. EnergyShield: Provably-safe
o✏oading of Neural Network controllers for energy e�ciency. In International Conference on Cyber-Physical Systems (ICCPS)

[Under review], 2023.

[10] J. M. Tarela and M. V. Mart́ınez. Region configurations for realizability of lattice Piecewise-Linear models. Mathematical and

Computer Modeling, 30(11):17–27, 1999. URL: http://www.sciencedirect.com/science/article/pii/S0895717799001958,
doi:10.1016/S0895-7177(99)00195-8.

`1

`2

`3

f

x0 x000x00
!1, !2 and !3 in the figure to the right

