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Assured TLL NN Repair

Assured TLL NN Architectures

• Assure that NN training CAN be successful
• Assured NN architectures for Linear-Time Invariant (LTI) Systems [4]

• Size TLL NN architecture based on Model-Predictive
Control

• Explicit MPC controller not required: fast algorithm
(assured architecture in seconds not days like NAS)

• Assured NN architectures for Nonlinear Systems [6,8]
• Assure more general specifications, too: bisimulation

• Abstract Disturbance Simulation → unify/extend robust and disturbance bisimulation

• Algorithmic translation of (known) Lipschitz-continuous controller to TLL [6]

• Repair counterexample from formal verification: no assurance → assurance
• Also: repair c.e. while assuring existing safe behavior is retained [1]

• Repair problem is hard: one neuron affects many affine regions
• Change one neuron to repair c.e. → behavior elsewhere 

in state space is affected → undo original safety of NN

• Solution: TLL semantics separate “local” and “global”
concerns (local linear functions/selector layer) [1]
• Input-affine dynamics/one-step counterexample [1]:

- Alternate between Local & Global convex optimization
problems
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EnergyShield [9]: Safety and Energy Savings

Controller “Shield”: Runtime safety monitor

Formal TLL NN Verification

Key Idea: Semantic NN Architecture — Two-Level Lattice (TLL)
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• Fast polynomial complexity algorithms for TLL Verification (in # neurons) [5]
• Restricted architectures → faster verification [5]

• Fast Box Analysis of Two Level Lattice NNs: FastBATLLNN [3]
• Restricted, “Box-like” (hypercube) output constraints → even faster [3]

• Polynomial complexity (in # neurons)

• Exploit constraints and min/max semantics

• FastBATLLNN compared to state-
of-art NN verifiers [3]:

• Fast reachability for Linear Time-Invariant (LTI) systems with TLL controllers
• One-step exact LTI reachability polynomial for TLLs 

(exponential for DNNs) [7]

• L-TLLBox [7]: faster speed using bounding box 
propagation (leverage FastBATLLNN)

• Example bounding box after T=3 steps [7]
• L-TLLBox (green): 25 seconds

• NNV (red): 139,000 seconds

• Energy used by NN hardware reduces Electric Vehicle range by up to 15% !
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Pipeline of design components to enforce assurances before and after training: assured architectures; formal verification; and assured repair.

• Based on Two-Level Lattice (TLL representation for Continuous, Piecewise Affine (CPWA) functions [10]
• Rectified Linear Unit (ReLU) TLL NNs [4]:

• Two “levels” of lattice operations: min and max operations via ReLUs
(all nonlinear neurons in these layers!)

• Local affine functions appear directly as neuron weights (first layer) [4]
(e.g.                                                                     ) 

• Activation region of local affine functions determined by “selection layer”

• Semantic NN Architecture: specific neuron weights ↔ specific properties of NN function

• Use controller shield to
bound safe edge response 
times [9]

• Controller shield assures
safety after receiving 
response [2]

• On-vehicle computation used
as fallback

• Energy use (and hence 
simplicity) of shield is critical

• State dependent energy savings: more energy saved when “safer”!
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